

SEMITOP[®] 3

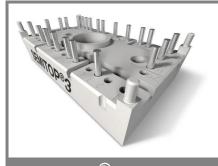
IGBT Module

SK25MLI065

Target Data

Features

- Compact design
- One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- Ultra Fast NPT IGBT technologyCAL technology FWD


Typical Applications*

• Multi level inverter

Symbol	Conditions		Values	Units
IGBT				
V _{CES}	T _i = 25 °C		600	V
I _C	T _j = 125 °C	T _s = 25 °C	30	Α
		T _s = 80 °C	22	А
I _{CRM}	I _{CRM} = 2 x I _{Cnom}		60	А
V _{GES}			± 20	V
t _{psc}	V_{CC} = 300 V; $V_{GE} \le$ 20 V; VCES < 600 V	T _j = 125 °C	10	μs
Inverse	Diode			
I _F	T _j = 150 °C	T _s = 25 °C	36	А
		T _s = 80 °C	24	А
I _{FRM}	I _{FRM} = 2 x I _{Fnom}			А
I _{FSM}	t _p = 10 ms; half sine wave	T _j = 150 °C	200	А
Freewh	eeling Diode			
I _F	T _j = 150 °C	T _{case} = 25 °C	36	А
		T _{case} = 80 °C	24	А
I _{FRM}				А
I _{FSM}	t _p = 10 ms; half sine wave	T _j = 150 °C	200	А
Module	!			
I _{t(RMS)}				А
T _{vj}			-40 +150	°C
T _{stg}			-40 +125	°C
V _{isol}	AC, 1 min.		2500	V

Characteristics T _s =			25 °C, unless otherwise specified				
Symbol	Conditions		min.	typ.	max.	Units	
IGBT							
V _{GE(th)}	V_{GE} = V_{CE} , I_C = 0,7 mA		3	4	5	V	
I _{CES}	V_{GE} = 0 V, V_{CE} = V_{CES}	T _j = 25 °C			0,0022	mA	
I _{GES}	V _{CE} = 0 V, V _{GE} = 20 V	T _j = 25 °C			120	nA	
V _{CE0}		T _j = 25 °C		1,4	1,9	V	
		T _j = 125 °C		1,7	2,2	V	
r _{CE}	V _{GE} = 15 V	T _j = 25°C				mΩ	
		T _j = 125°C		44		mΩ	
V _{CE(sat)}	I _{Cnom} = 30 A, V _{GE} = 15 V			1,8		V	
		T _j = 125°C _{chiplev.}		2,1		V	
C _{ies}				1,6		nF	
C _{oes}	V _{CE} = 25, V _{GE} = 0 V	f = 1 MHz		0,15		nF	
C _{res}				0,09		nF	
t _{d(on)}				30		ns	
t _r	R _{Gon} = 33 Ω	V _{CC} = 300V		25		ns	
E _{on}		I _C = 25A		0,75		mJ	
t _{d(off)}	R _{Goff} = 33 Ω	T _j = 125 °C		250		ns	
t _f		V _{GE} =±15V		15		ns	
E _{off}				0,6		mJ	
R _{th(j-s)}	per IGBT				1,4	K/W	

SEMITOP[®] 3

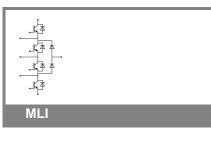
IGBT Module

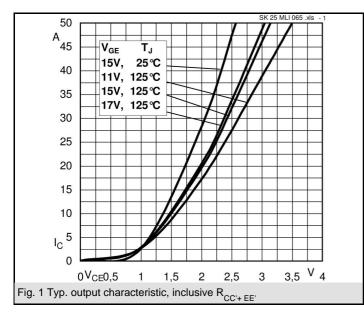
SK25MLI065

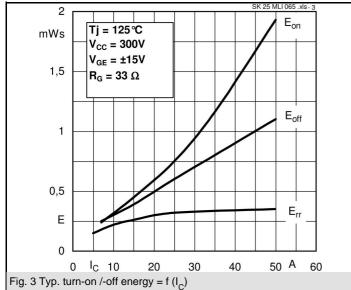
Target Data

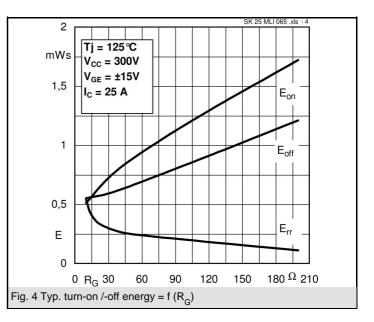
Features

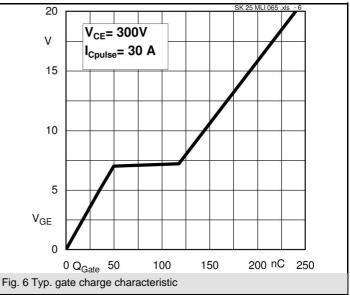
- Compact design
- One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- Ultra Fast NPT IGBT technology
 CAL technology EWD
- CAL technology FWD

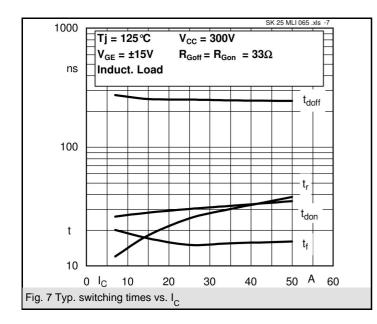

Typical Applications*

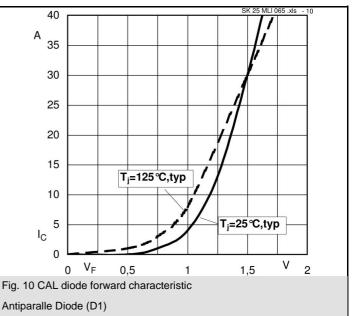

Multi level inverter

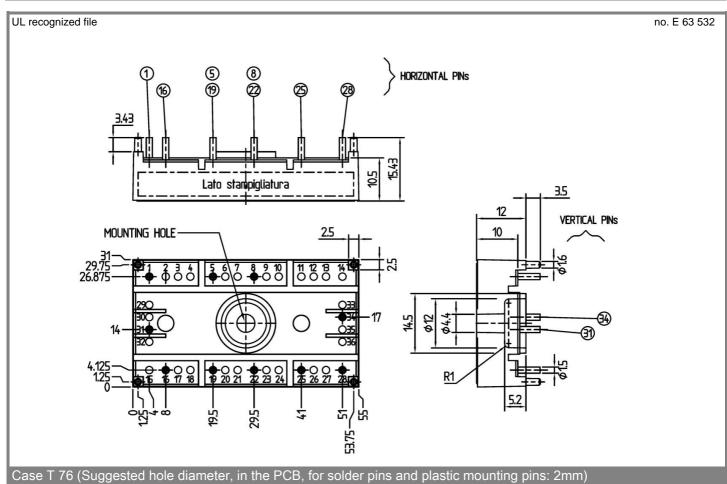

Characteristics							
Symbol	Conditions		min.	typ.	max.	Units	
Antiparal	lel Diode (D1)						
$V_F = V_{EC}$	I_{Fnom} = 25 A; V_{GE} = 0 V			1,45		V	
		$T_j = 125 \ ^{\circ}C_{chiplev.}$		1,4		V	
V _{F0}		T _j = 25 °C				V	
		T _j = 125 °C		0,85		V	
r _F		T _j = 25 °C				mΩ	
		T _j = 125 °C		22		mΩ	
I _{RRM}	I _F = 25 A	T _j = 125 °C				А	
Q _{rr}	di/dt = -2400 A/µs					μC	
Err	V _R = 300V			0,32		mJ	
R _{th(j-s)D}	per diode				1,7	K/W	
Freewhee	eling Diode (D2)						
$V_F = V_{EC}$	I_{Fnom} = 25 A; V_{GE} = 0 V	T _j = 25 °C _{chiplev.}		1,45		V	
		T_j = 125 °C _{chiplev.}		1,4		V	
V _{F0}		T _j = 125 °C		0,85		V	
r _F		T _j = 125 °C		22		V	
I _{RRM}	I _F = 25 A	T _j = 125 °C				А	
Q _{rr}	di/dt = -2400 A/µs					μC	
Err	V _R =300V			0,32		mJ	
R _{th(j-s)FD}	per diode				1,7	K/W	
M _s	to heat sink		2,25		2,5	Nm	
w				30		g	

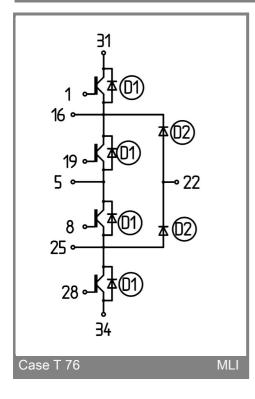

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.


* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.








© by SEMIKRON

